КОМПЛЕКТ ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Техническая механика для специальности 23.02.02 Автомобиле-и тракторостроение (базовой подготовки)

СОДЕРЖАНИЕ

- 1. ПАСПОРТ КОМПЛЕКТА КОС ПО УЧЕБНОЙ ДИСЦИПЛИНЕ
- 2. СПЕЦИФИКАЦИИ ОЦЕНОЧНЫХ СРЕДСТВ
- 3. ВАРИАНТЫ ОЦЕНОЧНЫХ СРЕДСТВ
- 4. КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНКИ ПРАКТИЧЕСКОЙ РАБОТЫ №1
- 5. КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНКИ ПРАКТИЧЕСКОЙ РАБОТЫ №2
- 6. КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНКИ ПРАКТИЧЕСКОЙ РАБОТЫ №3
- 7. КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНКИ ПРАКТИЧЕСКОЙ РАБОТЕЫ№4
- 8. КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНКИ ПРАКТИЧЕСКОЙ РАБОТЫ №5
- 9. КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНКИ ППРАКТИЧЕСКОЙ РАБОТЫ №6
- 10. КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНКИ ТЕСТА № 1
- 11. КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНКИ ТЕСТА №2
- 12. КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНКИ ИНДИВИДУАЛЬНОГО ЗАДАНИЯ

комплекта оценочных средств по учебной дисциплине Техническая механика

1.1. Общие положения

Оценочные средства (ФОС) разработаны в соответствии с требованиями основной профессиональной образовательной программы (ОПОП) и Федерального государственного стандарта по специальности среднего профессионального образования (СПО) 15.02.08 «Технология машиностроения» программы учебной дисциплины «Техническая механика». оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Техническая механика» для специальности СПО 23.02.02 Автомобиле-и тракторостроение среднего профессионального образования (базовой подготовки)

Техник по автомобиле- и тракторостроению должен обладать общими компетенциями, включающими в себя способность:

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, определять методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Решать проблемы, оценивать риски и принимать решения в нестандартных ситуациях.
- ОК 4. Осуществлять поиск, анализ и оценку информации, необходимой для постановки и решения профессиональных задач, профессионального и личностного развития.
- ОК 5. Использовать информационно-коммуникационные технологии для совершенствования профессиональной деятельности.
- ОК 6. Работать в коллективе и команде, обеспечивать ее сплочение, эффективно общаться с коллегами, руководством, потребителями.
- OК 7. Ставить цели, мотивировать деятельность подчиненных, организовывать и контролировать их работу с принятием на себя ответственности за результат выполнения заданий.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК 9. Быть готовым к смене технологий в профессиональной деятельности.

Техник по автомобиле- и тракторостроению должен обладать профессиональными компетенциями, соответствующими видам деятельности:

Подготовка и осуществление технологического процесса изготовления деталей, сборка изделий автомобиле- и тракторостроения, контроль за соблюдением технологической дисциплины на производстве.

- ПК 1.1. Осуществлять технологический процесс изготовления деталей, сборка и испытания изделий автотракторной техники.
- ПК 1.2. Обеспечивать технологическую подготовку производства по реализации технологического процесса.
- ПК 2.3. Составлять технические задания на проектирование технологической оснастки.
- ПК 2.4. Разрабатывать рабочий проект деталей и узлов в соответствии с требованиями ЕСКД.
- ПК 2.5. Под руководством более квалифицированного специалиста проводить патентные исследования и определять показатели технического уровня проектируемых объектов техники и технологии.
- ПК 3.2. Проверять качество выпускаемой продукции и/или выполняемых работ.

В результате освоения учебной дисциплины обучающийся должен уметь:

использовать методы проверочных расчетов на прочность, действий изгиба и кручения; выбирать способ передачи вращательного момента;

В результате освоения учебной дисциплины обучающийся должен знать:

основные положения и аксиомы статики, кинематики, динамики и деталей машин.

1.2. Результаты освоения дисциплины, подлежащие проверке

Результаты обучения (освоенные умения, усвоенные знания)	Код и наименование элемента умений	Код и наименовани е элемента знаний	Основные показатели оценки результатов
У1. использовать методы проверочных расчетов на прочность, действий изгиба и кручения;			Проверка напряжений, определение допустимой нагрузки, коэффициента запаса прочности
У2 выбирать способ передачи вращательного момента;			Выбор электродвигателя и кинематический расчет для редуктора
31 основные положения и аксиомы статики, кинематики, динамики и деталей машин			Знание видов деформации, напряжений, возникающих в сечении тела

1.3. Распределение основных показателей оценки результатов по видам аттестации

Код и наименование	Виды аттестации		
элемента умений или	Текущий контроль	Промежуточная	
знаний		аттестация	
У1. использовать методы	+	+	
проверочных расчетов			
на прочность, действий			
изгиба и кручения;			
У2 выбирать способ	+	+	
передачи			
вращательного момента;			
31 основные положения	+	+	
и аксиомы статики,			
кинематики, динамики и			
деталей машин			

Кодификатор контрольных заданий

Функциональный признак		Код
оценочного средства (тип	Метод/форма контроля	контрольного
контрольного задания)		задания
Проектное задание	Учебный проект (курсовой,	1
	исследовательский, обучающий,	
	сервисный, социальный творческий,	
	рекламно-презентационный)	
Реферативное задание	Реферат	2
Расчетная задача	Контрольная работа, индивидуальное	3
	домашнее задание, лабораторная	
	работа, практические занятия,	
	письменный экзамен	
Тест, тестовое задание	Тестирование, письменный экзамен	4
Практическое задание	Лабораторная работа, практические	5
	занятия, практический экзамен	

1.4. Распределение оценочных средств по элементам знаний и умений текущего контроля

Содержание учебного материала по	Тип контрольного задания		ания
программе УД	У1	У2	31
Раздел1.	0 1	0.2	31
Теоретическая			
механика. Статика.			
Тема 1.2. Плоская			
система сходящихся			2
сил			
Тема 1.3 Пара сил и			1
момент силы относительно точки			1
Тема 1.4. Плоская и			
пространственная			4
система сил			
Тема 1.5. Центр			5
тяжести тела			J
Тема 1.6. Кинематика.			3
Основные понятия.			_
Тема 1.7. Виды			2
движения твердого тела			2
Тема 1.8 Основные			
понятия, задачи и			1
аксиомы динамики			
Раздел 2.			
Сопротивление			
материалов			
Тема 2.1. Основные			
положения. Напряжение. Метод	3		
сечений.			
Тема 2.2. Растяжение и	۳		
сжатие	5		
Тема 2.3. Срез и	5		
смятие. Кручение			
Тема 2.4. Изгиб.	5		
Раздел 3. Детали			
машин Тема 3.1. Детали			
Тема 3.1. Детали машин и механизмов		2	
Тема 3.2. Передача			
«Винт-гайка»,			
зубчатые, червячные,		3	
ременные и другие			
виды передачи.			

1.5. Распределение оценочных средств по элементам знаний и умений на промежуточной аттестации

Содержание учебного материала по программе УД	Тип контрольного задания		ания
программе уд	У 1	У2	31
Раздел1.	V 1	<u> </u>	
Теоретическая			
механика. Статика.			
. Тема 1.2. Плоская			
система сходящихся			4
сил			
. Тема 1.3 Пара сил и момент силы			1
момент силы относительно точки			1
Тема 1.4. Плоская и			
пространственная			5
система сил			
Тема 1.5. Центр			
тяжести тела			
Тема 1.6. Кинематика.			3
Основные понятия.			-
Тема 1.7. Виды			3
движения твердого тела			3
Тема 1.8 Основные			
понятия, задачи и			1
аксиомы динамики			
Раздел 2.			
Сопротивление			
материалов			
Тема 2.1. Основные			
положения. Напряжение. Метод	1		
сечений.			
Тема 2.2. Растяжение и	2		
сжатие	2		
Тема 2.3. Срез и	4		
смятие. Кручение			
Тема 2.4. Изгиб.	5		
Раздел 3. Детали			
Тома 2.1 Пота и			
Тема 3.1. Детали машин и механизмов		2	
Тема 3.2. Передача			
«Винт-гайка»,			
зубчатые, червячные,		4	
ременные и другие			
виды передачи.			

2. СПЕЦИФИКАЦИЯ ОЦЕНОЧНЫХ СРЕДСТВ

2.1. Назначение

Спецификацией устанавливаются требования к содержанию и оформлению вариантов оценочного средства..

Практическая работа предназначен для текущей аттестации и оценки знаний и умений студентов по программе учебной дисциплины <u>«Техническая механика»</u> основной профессиональной образовательной программы 23.02.02 Автомобиле-и тракторостроение

Тест предназначен для текущей аттестации и оценки знаний и умений студентов по программе учебной дисциплины «Техническая механика» основной профессиональной образовательной программы 23.02.02 Автомобиле-и тракторостроение

2.2. Контингент аттестуемых: *студенты 2 курса специальности* 23.02.02 Автомобиле-и тракторостроение

Форма и условия аттестации: (после какого раздела / темы учебной дисциплины)

Практические работы

Практическая работа №1 проводится после изучения темы 1.2 Раздела 1.

Практическая работа №2 проводится после изучения темы 1.3, 1.4 Раздела 1.

Практическая работа №3 проводится после изучения темы 1.6 Раздела 1.

Практическая работа №4 проводится после изучения темы 2.1. 2.2 Раздела 2.

Практическая работа №5 проводится после изучения темы 2.3. 2.4. Раздела 2.

Практическая работа №6 проводится после изучения темы 3.1. 3.2..Раздела 2.

Тесты

Тест №1 проводится после изучения темы 2.1 Раздела 2.

Тест №2 проводится после изучения темы 3.1 Раздела 3.

2.3. Рекомендуемая литература для разработки оценочных средств и подготовке обучающихся к аттестации.

Основные источники:

- 1. Вереина Л.И., Краснов М.М. Техническая механика: теоретическая механика для техникумов. Академия, 2009
- 2. Фролов М.И. Техническая механика. Детали машин. М.: Высшая школа, 2010.
- 3. Варданян Г.С., Андреев В. И., Атаров Н.М., Горшков А.А., Сопротивление материалов с основами теории упругости и пластичности. М.: Инфра-М, 2010-193с.

Дополнительные источники:

- 1. Эрдеди А.А. и др., Техническая механика: Теоретическая механика, Сопротивление материалов, учеб. для техникумов М.; «Высшая школа», 1991
- 2. Аркуша А.И. Руководство к решению задач по теоретической механике М.: «Высшая школа», 2000
- 3. Опарин И.С. Основы технической механики/ рабочая тетрадь М.: «Академия», 2010
- 4. Олофинская В.П. Техническая механика: курс лекций с вариантами практических и тестовых заданий М.: Форум, 2007.
- 5. Куклин Н.Г., Куклина Г.С. Детали машин. М: Машиностроение, 2009.

Перечень материалов, оборудования и информационных источников.

Интернет- источники:

1. Интернет-ресурс «Техническая механика». Форма доступа:

http://edu.vgasu.vrn.ru/SiteDirectory/UOP/DocLib13/Texнuческая%20мexaникa.pdf; ru.wikipedia.org

3. ВАРИАНТЫ ОЦЕНОЧНЫХ СРЕДСТВ

Практическая работа №1

Проводится после изучения темы 1.2. раздела 1.

Время выполнения:

подготовка_3 мин; выполнение _50_ мин; оформление и сдача 5 мин; всего 58 мин.

Равновесие плоской системы сходящихся сил

Предлагается 5 вариантов заданий, оформленных в виде таблиц. Каждый вариант содержит 5 вопросов(теоретических и практических), расположенных по возрастанию сложности задания. К каждому вопросу соответствуют 4 ответа, один из которых правильный. Цель: решение задач на равновесие плоской системы сходящихся сил. Уметь находить равнодействующую сходящихся сил, определять проекции сил на оси.

Вопросы	Ответы	Koz
1. Определить величину равнодействующей силы	39,5 кН	1
F ₂ = 40 kH	44,4 ĸH	2
$F_1 = 20 \text{ kH}$	19,5 кН	3
$F_3 = 30 \text{ KH}$	Верный ответ не приведен	4
2. По известным проекциям на оси кординат x и y определить угол наклона равнодействующей к оси 0x	30°	1
$F_{\Sigma x} = 15 \text{ kH}; F_{\Sigma y} = 8,66 \text{ kH}$ $y F \neq$	20°	2
α?	60°	3
x	75°	4
. Какой вектор силового многоугольника является равнодействующей силой?	F ₂	1
F_2 F_3	F ₄	2
F_4	F ₅	3
F ₅	F ₁	4
. Груз F находится в равновесии. Указать, какой из треугольников для шарнира B построен верно	Ri	1
1 2 45°	R_3 R_2 R_2 R_3 R_2	2
3 30°	$ \begin{array}{c c} & 2 & 3 & R_1 \\ \hline R_2 & R_3 & R_3 \end{array} $	3
$\prod_{\mathbf{V}} F$	R_1	4
Груз <i>F</i> находится в равновесии. Указать, какая система уравнений равновесия верна в этом случае	$\sum F_{kx} = R_2 - R_1 \cos 60^\circ - R_3 \cos 45^\circ = 0$ $\sum F_{ky} = R_1 \cos 60^\circ - R_3 \cos 45^\circ = 0$	1
2	$\sum F_{kx} = R_2 - R_1 \cos 30^\circ - R_3 \cos 45^\circ = 0$ $\sum F_{ky} = R_1 \cos 60^\circ - R_3 \cos 45^\circ = 0$	2
45* 0	$\sum F_{kx} = R_1 \cos 30^\circ - R_3 \cos 45^\circ + R_2 = 0$ $\sum F_{ky} = R_3 \cos 45^\circ - R_1 \cos 60^\circ = 0$	3
A . A.	Верный ответ не приведен	4

Вопросы	Ответы	Код
Определить проекцию равнодействующей на ось x	26,54 κΗ	1
$F_1 = 6 \text{ KH}$	3,87 кН	2
15° x	6,28 ĸH	3
$F_2 = 4 \text{ KH}$ $F_3 = 10 \text{ KH}$	Верный ответ не приведен	4
2. Определить направление равнодействующей силы (α_x) по ее проекциям на оси x и y $F_{\infty} = 25 \text{ H}$	14°30'	1
Определить проекцию равнодействующей на ось x $F_1 = 6 \text{ кH}$ $A5^\circ$ $F_2 = 4 \text{ кH}$ Определить направление равнодействующей силы (α_x) по ее проекциям на оси x и y $F_{2x} = 25 \text{ H}$ $F_{2x} = 9.9 \text{ H}$ Сходящаяся система $4-x$ сил, действующих на балку, уравновешена $F_{1y} = 16 \text{ H}$; $F_{2y} = -46 \text{ H}$; $F_{3y} = 36 \text{ H}$ $\sum F_{kx} = 0$ Определить величину F_{4y} Груз F находится в равновесии. Указать, какой из гиловых треугольников для шарнира B построен верно $A = \frac{2}{30^\circ 3}$ $B = \frac{1}{30^\circ 3}$ Груз находится в равновесии. Указать, какая система гравнений равновесия верна в этом случае	64°15'	2
12	21°40'	3
	Верный ответ не приведен	4
. Сходящаяся система 4-х сил, действующих на балку,	16 H	1
уравновещена $F_{1y} = 16 \text{ H}; F_{2y} = -46 \text{ H}; F_{3y} = 36 \text{ H}$	−6 H	2
$\sum F_{kx} = 0$	6 H	3
Определить величину F_{4y}	1H	4
Определить величину F_{4y} . Груз F находится в равновесии. Указать, какой из силовых треугольников для шарнира B построен верно A 2	R_1	1
50° B / 1	R_2 R_3 R_1 R_2 R_3 R_2	2
	R_1 $\begin{pmatrix} 2 \\ R_3 \\ R_3 \end{pmatrix}$ $\begin{pmatrix} R_2 \\ R_2 \end{pmatrix}$	3
7	R_1	4
. Груз находится в равновесии. Указать, какая система уравнений равновесия верна в этом случае 2 / у	$\sum F_{kx} = R_1 \cos 60^\circ + R_2 = 0$ $\sum F_{ky} = R_3 + R_1 \cos 30^\circ = 0$	1.
60° 230° 0	$\sum F_{kx} = R_1 \cos 30^{\circ} - R_2 = 0$ $\sum F_{ky} = R_3 + R_1 \cos 60^{\circ} = 0$	2
	$\sum F_{kx} = R_1 \cos 30^{\circ} - R_2 = 0$ $\sum F_{ky} = -R_3 + R_1 \cos 60^{\circ} = 0$	3
	Верный ответ не приведен	4

Вопросы	Ответы	Код
. Определить проекцию равнодействующей плоской системы 4-х сходящихся сил на ось 0х	11 кН	1
$F_{1x} = 5 \text{ H}; F_{2x} = -16 \text{ H}; F_{3x} = 12 \text{ H}; F_{4x} = 10 \text{ H}$ $F_{1y} = 3 \text{H}; F_{2y} = 12 \text{ H}; F_{3y} = -30 \text{ H}; F_{4y} = 15 \text{ H}$	16 κΗ	2
SHEET OF SHEET SHE	7 KH	3
	Верный ответ не приведен	4
. Определить величину равнодействующей силы у	23,8 κΗ	1
F ₂ = 30 κH	33,9 ĸH	2
$F_1 = 30 \text{ kH}$	13,9 ĸH	3
$F_3 = 30 \text{ kH}$ 0 x	Верный ответ не приведен	4
3. Система 4-х сил уравновещена. $F_{1x} = 5 \text{ H}$; $F_{2x} = 18 \text{ H}$; $F_{3x} = -20 \text{ H}$; $\sum F_{ky} = 0$	5 H	1
Определить величину проекции четвертой силы на ось $0x$	-3 H	2
	1 H	3
	0	4
4. Груз F находится в равновесии. Указать, какой из треугольников сил для шарнира В построен верно	R_C R_A R_D R_A	1
A 50° 60° D	R_D R_C	2
C^{B} $\downarrow F$	R_A	3
R — соответствующая реакция связи	R_C R_D R_C R_D	4
 Груз F находится в равновесии. Указать, какая система уравнений равновесия для шарнира B верна в этом случае 	$\sum F_{kx} = R_2 + R_3 \cos 30^\circ - R_1 \cos 30^\circ = 0$ $\sum F_{ky} = R_3 \cos 60^\circ - R_1 \cos 30^\circ = 0$	1
2 y B 1 x	$\sum F_{kx} = -R_2 + R_3 \cos 30^\circ + R_1 \cos 60^\circ = 0$ $\sum F_{ky} = R_3 \cos 60^\circ - R_1 \cos 30^\circ = 0$	2
3 90°	$\sum F_{kx} = -R_2 - R_3 \cos 30^\circ + R_1 \cos 60^\circ = 0$ $\sum F_{ky} = R_3 \cos 60^\circ - R_1 \cos 30^\circ = 0$	3
/1		

Практическая работа №1

Работа оценивается по 5-ти бальной системе, исходя из следующих принципов:

за выполнение задания, требующего одной

требующего 38 выполнение задания, нескольких математических операций ... 1,5 балла.

Количество баллов	Оценка
5	Отлично
4	Хорошо
3	<i>Удовлетворительно</i>
меньше 3	Неудовлетворительно

Задания выполняются на листке, приводятся все

формулы, расчеты, единицы измерения, пишется полученный ответ и выбирается код из правого крайнего столбца.

Ответы:

Вопросы	1	2	3	4	5
Вариант 1	3	2	1	1	2
Вариант 2	1	1	2	1	2
Вариант 3	2	3	2	4	3
Вариант 4	1	1	2	3	2
Вариант 5	1	4	3	3	1

Практическая работа №2

Проводится после изучения темы 1.3., 1.4 раздел 1

Время выполнения:

подготовка 3 мин; выполнение 50 мин; оформление и сдача 5 мин; всего 58 мин.

Определение опорных реакций балок и составление уравнения равновесия

Предлагается 5 вариантов заданий, оформленных в виде таблиц. Каждый вариант содержит 5 вопросов(теоретических и практических), расположенных по возрастанию сложности задания. К каждому вопросу соответствуют 4 ответа, один из которых правильный.

Цель: решение задач на равновесие пространственной системы сил.

Вопросы	Ответы	Код
1. Какие силы из заданной системы образуют пары сил? $F_1 = F_4 = F_5$ $F_2 = F_3 = F_6$	$(ar{F}_1;ar{F}_4)$ и $(ar{F}_2;ar{F}_3)$	1
F ₁	$(ar{F}_2;ar{F}_3)$ и $(ar{F}_4;ar{F}_5)$	2
F_6 45° F_3 F_2 F_3	$(ar{F}_4;ar{F}_5)$ и $(ar{F}_2;ar{F}_5)$	3
F_5 F_4	$(ar{F}_2;ar{F}_5)$ и $(ar{F}_2;ar{F}_6)$	4
2. Момент пары сил <i>M</i> = 104 H · м. Найти <i>AB</i>	2 м	ı
F' = 26 H	4 M	2
$A = 30^{\circ}$	6 м	3
FX30	8 м	4
3. Какие из изображенных пар сил эквивалентны?	5, 5 и 10, 10	1 1
5 H 10 H 15 H	5, 5 и 15, 15	2
3 M 1 3 M 1 M 2 M 60°	10, 10 и 15, 15	3
5 H 15 H 10 H	Верный ответ не приведен	4
$_{1}^{5}$ H $_{2}^{6}$ H $_{3}^{6}$ H $_{4}^{6}$ H $_{5}^{6}$ H $_{1}^{6}$ H $_{1}^{6}$ H $_{2}^{6}$ H $_{3}^{6}$ H $_{3}^{6}$ H $_{4}^{6}$ H $_{5}^{6}$ H $_{$	14 Н∙м	1
	19 Н∙м	2
m_3 m_2	11 Н · м	3
Определить величину момента пары m ₄	15 Н • м	4
5. Определить сумму моментов сил относительно точки A $F_1 = 10 \text{ H}$; $F_2 = 20 \text{ H}$; $F_3 = 30 \text{ H}$; $F_4 = 40 \text{ H}$	35 Н⋅м	1
F ₁ 0.8 M 30°	42 Н•м	2
0,5 M 1 M	38 Н - м	3
F ₃	54 H · M	4

Вопросы	Ответы	Код
1. Какие силы из заданной системы образуют пару? $F_1 = F_2 = F_5 = F_3 = F_4$;	$ar{F}_1;ar{F}_2$	1
F_1 F_3	$ar{F}_1$; $ar{F}_5$	2
F4	$ar{F}_3$; $ar{F}_4$	3
F_5	$\overline{F}_2; \overline{F}_5$	4
2. Определить момент заданной пары сил	5 H·M	I.
F 1 M	10 Н • м	2
60° F	17 H·M	3
F = F' = 20 H	20 H · M	4
3. Определить момент результирующей пары сил	5 H·M	1
0,7 M 50 H	9 Н • м	2
10 H → 0,6 M 30 H	31 Н · м	3
M_{Σ} ?	45 H · м	4
К жестким прямоугольникам приложены пары сил.	aQ FAP FAP A	p 1
Какая система пар уравновещена? $Q = 10 \text{ H}$; $P = 20 \text{ H}$; $F = 15 \text{ H}$ a, b – стороны прямоугольника		2
a = 3 m; b = 4 m	P P P P P P P P P P P P P P P P P P P	3
	1 2 3 4	4
5. Определить сумму моментов относительно точки O $A $	81 H · M	1
C F_2 $A5^\circ$	130 Н • м	2
AB = 2 M; OB = BC; OB = 5 M $F_1 = 12 \text{ H}; F_2 = 2 \text{ H}; F_3 = 30 \text{ H}$	119 Н · м	3
	130 Н - м	4

Вопросы	Ответы	Код
. Какие силы из заданной системы образуют пару сил? Модули всех сил равны	\overline{F}_1 и \overline{F}_5	1
F ₃	$ar{F}_2$ и $ar{F}_4$	2
F_2 f_4	$ar{F}_1$ и $ar{F}_3$	3
71 75	$ar{F}_3$ и $ar{F}_5$	4
Как изменится момент пары при повороте сил на 30°? $a = 5 \text{ M}$ $F = 10 \text{ H}$	уменьшится в 1,15 раза	1
30° / F	увеличится в 1,15 раза	2
<i>a</i>	увеличится в 1,5 раза	3
\overline{F} 30°	Не изменится	4
Определить момент результирующей пары сил	2,2 Н + м	1
10 H 0,4 M 18 H	14,2 Н⋅м	2
0,1 M	12,2 Н⋅м	3
20 H Σ?	Верный ответ не приведен	4
К жестким прямоугольникам приложены пары сил. Какая система пар уравновещена?	a O O AFPA O F\$	1
P = 10 H; Q = 15 H; F = 20 H		2
a = 3 m; b = 4 m		3
	1 2 3 4	
Определить сумму моментов относительно точки C	240 Н • м	1
F_1 A	~0	2
$ begin{picture}(20,0) \put(0,0){\line(1,0){10}} \put(0,0$	40 Н · м	3
AB = 2 m; BC = 4 m; DB = 1 m $F_1 = 100 \text{ H}; F_2 = 50 \text{ H}; F_3 = 35 \text{ H}$	140 Н • м	4

Вопросы	Ответы	Код
. Какие силы из заданной системы образуют пару сил?	$ar{F}_1$ и $ar{F}_3$	1
F_8 F_2	$ar{F}_4$ и $ar{F}_8$	2
F_6 F_5 F_4 F_3	$ar{F}_2$ и $ar{F}_6$	3
Модули всех сил равны	$ar{F}_3$ и $ar{F}_7$	4.
. Известно, что пары сил $(\bar{F}_1 \ \text{и} \ \bar{F}_1')$ и $(\bar{F}_2 \ \text{и} \ \bar{F}_2')$ эквивалентны. $F_1=2\ \text{H};$	0,8 м	1
$F_2 = 5 \text{ H};$ $H_1 = 0,4 \text{ M}$	0,16 м	2
Определить H_2 F_1 F_2	0,24 м	3
$ \begin{array}{c c} H_1 \\ F_1' \\ \hline F_2' \end{array} $	0,36 м	4
. Для заданной системы пар сил найти момент результирующей пары	1 H·m	1
2 M 2 H	3 Н∙м	2
, 2 _M 8 3 _M	13 Н · м	3
M_{Σ} ?	21 Н · м	4
. К жестким прямоугольникам приложены пары сил. Какая система пар сил уравновешена?	FAa QAF QAP Q	1
a = 3 м; $b = 4$ м; $Q = 9$ H; $F = 12$ H; $P = 15$ H $a, b -$ стороны прямоугольника	b Q FF	2
и, в – стороны примоутольника	$F \downarrow P$ $F \downarrow P \downarrow Q$	3
	1 2 3 4	4
Определить сумму моментов относительно точки О	36 Н⋅м	1
\uparrow_{F_3} \downarrow_{F_1}	24 Н · м	2
A 45° B F2	0	3
AO = 2 m; OC = OB = 1 m; $F_1 = 12 \text{ H}; F_2 = 18 \text{ H}; F_3 = 9 \text{ H}$	124 Н • м	4

Практическая работа №2

	Количество	Оценка
Работа оценивается по 5-ти бальной системе,	баллов	
исходя из следующих принципов:	5	Отлично
за ответы на вопрос, не требующий расчетов	4	Хорошо
0,5 баллов.	3	<i>Удовлетворительно</i>
за выполнение задания, требующего одной	меньше 3	Неудовлетворительно
математической операции1 балл.		

за выполнение задания, требующего нескольких математических операций ... 1,5 балла.

Задания выполняются на листке, приводятся все формулы, расчеты, единицы измерения, пишется полученный ответ и выбирается код из правого крайнего столбца.

Ответы:

Вопросы	1	2	3	4	5
Вариант 1	1	4	4	2	3
Вариант 2	4	3	2	2	2
Вариант 3	3	2	1	2	2
Вариант 4	3	2	2	4	3
Вариант 5	3	2	1	2	3

Практическая работа №3

Проводится после изучения темы 1.5 раздел 1

Время выполнения:

подготовка_3 мин; выполнение _50_ мин; оформление и сдача 5 мин; всего 58 мин.

Определение координат Ц.Т. тела

Предлагается 5 вариантов заданий, оформленных в виде таблиц. Каждый вариант содержит 5 вопросов(теоретических и практических), расположенных по возрастанию сложности задания. К каждому вопросу соответствуют 4 ответа, один из которых правильный.

Цель: закрепить знания и понятия о ЦТ тела, о расчетах ЦТ простых геометрических фигур

Вопросы	Ответы	Код
Выбрать формулы для расчета координат центра тяжести однородного тела, составленного из объемных частей	$x_C = \frac{\sum G_k x_k}{\sum G_k}; y_C = \frac{\sum G_k y_k}{\sum G_k}$	i
	$x_C = \frac{\sum l_k x_k}{\sum l_k}; y_C = \frac{\sum l_k y_k}{\sum l_k}$	2
	$x_C = \frac{\sum A_k x_k}{\sum A_k}; y_C = \frac{\sum A_k y_k}{\sum A_k}$	3
	$x_C = \frac{\sum V_k x_k}{\sum V_k}; y_C = \frac{\sum V_k y_k}{\sum V_k}$	4
Вычислить статический момент данной плоской фигуры относительно оси 0x	36 ⋅ 10 ³ mm ³	1
a sinceriorano centra	72 · 10 ³ mm ³	2
* V////	120 · 10 ³ мм ³	3
0 8 60 x	60 ⋅ 10 ³ mm ³	4
. Определить координату центра тяжести фигуры 2 относительно оси $0x$ $a = 270$ мм; $b = 150$ мм; $c = 90$ мм	150 мм	1
2	180 мм	2
3 1 2	160 мм	3
$0 \xrightarrow{a} x$	30 мм	4
. Определить координату y_C центра тяжести фигуры 1	2,75 см	1
y A №16	7,25 см	2
100 × 100 × 8	5 см	3
<u>y</u> x	4,25 см	4
Б. Вычислить координату x_C центра тяжести составного сечения $y \leftarrow 30$	23,8	1
Ø20 Ø	28	2
	18,8	3
0 20 60 x	12,5	4

Вопросы	Ответы	Код
. Что произойдет с координатами x_C и y_C , если увеличить	x_C и y_C не изменятся	1
величину основания треугольника до 90 мм?	изменится только x_C	2
e D	изменится только y_C	3
0 60 x	изменится и x_C , и y_C	4
. В каком случае для определения положения центра		1
тяжести необходимо определить две координаты расчетным путем?		2
		3
	1 2 3 4	4
. В каком случае координата центра тяжести фигуры $y_C = 4$ мм?	y 2, 8 y	1
		2
		3
		4
. Определить координату x_C центра тяжести фигуры $\emptyset 200$	250 мм	1
	230 мм	2
009	188 mm	3
0 200 800	414 mm	4
. Определить координаты центра тяжести для фигуры 2 y	2; 1	1
~ 2	2; 6	2
√ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1; 5	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3; 4	4

Вопросы	Ответы	Koz
. Укажите, в каком случае координата центра тяжести треугольника $y_{\rm C} = 6$ мм		1
y 15 $y 18$ $y 12$	Б	2
-1 -1	B	3
0 A X 0 B X $Y \downarrow 0$ X X	Верный ответ не приведен	4
В каком случае для определения центра тяжести достаточно определить одну координату расчетным		1
путем?		2
	1 2 3	3
	, <u>2</u>	4
В каком случае при определении центра тяжести плоской фигуры эту фигуру нельзя разбить на две части		1
с известными положениями центра тяжести?		2
	by 4	3
		4
Определить координаты центра тяжести фигуры	0; 108 мм	1
y_1		
\$	0; 127 мм	2
<u>Ø20</u> ≅	0; 116 мм	3
	0; 169 мм	4
Определить координаты центра тяжести для фигуры 1	4; 1	1
	6; 7	2
~		- N-2
0 2 6 2 x	4; 2	3

Вопросы	Ответы	Код
Выбрать формулы для расчета координат центра тяжести неоднородного тела, составленного из объемных частей	$x_C = \frac{\sum G_k x_k}{\sum G_k}; y_C = \frac{\sum G_k y_k}{\sum G_k}$	1
	$x_C = \frac{\sum l_k x_k}{\sum l_k}; y_C = \frac{\sum l_k y_k}{\sum l_k}$	2
	$x_C = \frac{\sum A_k x_k}{\sum A_k}; y_C = \frac{\sum A_k y_k}{\sum A_k}$	3
	$x_C = \frac{\sum V_k x_k}{\sum V_k}; y_C = \frac{\sum V_k y_k}{\sum V_k}$	4
Вычислить статический момент данной плоской фигуры относительно оси 0x	9 · 10 ³ mm ³	1
	18 ⋅ 10 ³ mm ³	2
60 9	36 ⋅ 10 ³ mm ³	3
0 x	42 · 10 ³ мм ³	4
6. Определить координаты центра тяжести фигуры 2 $a=80 \text{ мм}; b=90 \text{ мм}; c=30 \text{ мм}; d=f=20 \text{ мм}$	$x_c = -40 \text{ mm}; y_c = 50 \text{ mm}$	1
2 3	$x_c = -40 \text{ mm}; y_c = 35 \text{ mm}$	2
	$x_c = 25 \text{ mm}; y_c = 50 \text{ mm}$	3
, 0 <u>c</u> x	$x_c = -25 \text{ mm}; y_c = 30 \text{ mm}$	4
. Определить координаты y_C центра тяжести фигуры 1	64 мм	1
Nº16 70×70×5	83 MM	2
No 16 1	99 мм	3
	163,5 мм	4
. Вычислить координату x_C центра тяжести составного сечения	19 мм	1
y 10 Ø10	21 мм	2
8 8	187 мм	3
0 20 x	25 MM	4.

Вопросы	Ответы	Код
. Что произойдет с координатами x_C и y_C , если увеличить	изменится и x_C , и y_C	1
высоту треугольника вдвое?	изменится только x_C	2
h	изменится только у _С	3
0 b x	x_C и y_C не изменятся	4
. В каком случае для определения положения центра		1
тяжести необходимо выбрать две координаты центра тяжести по ГОСТ?	PTIA	2
		3
	1 2 3 4	4
3. В каком случае координата центра тяжести фигуры $y_C = 6 \text{ мм}$?	y 2 8	1
		2
		3
		4
. Определить координаты центра тяжести фигуры у Ø2	10; 4	1
1 -1 DANIE	5; 4	2
2	4; 8	3
0 5 15 x	5; 8	4
6. Определить координаты центра тяжести для фигуры 2 y	7; 9,5	1
	11; 3	2
2 15/1/1/	7; 5	3
0 10 3 1 x	10; 3	4

Практическая работа №3

Работа оценивается по 5-ти бальной системе, исходя из следующих принципов:

за выполнение задания, требующего нескольких математических операций ... 1,5 балла.

Количество баллов	Оценка
5	Отлично
4	Хорошо
3	<i>Удовлетворительно</i>
моньшо 3	Неудовлетеннопительно

Задания выполняются на листке, приводятся все

формулы, расчеты, единицы измерения, пишется полученный ответ и выбирается код из правого крайнего столбца.

Ответы:

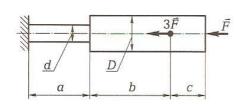
Вопросы	1	2	3	4	5
Вариант 1	4	3	2	2	1
Вариант 2	2	4	2	4	2
Вариант 3	2	4	2	2	2
Вариант 4	1	2	1	2	1
Вариант 5	3	3	4	4	1

Практическая работа №4

Проводится после изучения темы 2.1, 2.2, раздел 2

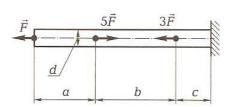
Время выполнения:

подготовка ____3 ___ мин; выполнение ___25 _ мин; оформление и сдача ___5 ___ мин; всего 33 мин.

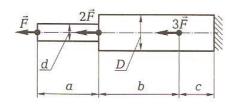

Построение эпюр напряжений и продольных сил

Цель: закрепить знание видов деформации, напряжений, возникающих в сечении тела. Научиться определять виды нагружения и внутренние силовые факторы. Построение эпюр продольных сил и нормальных напряжений.

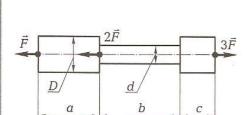
$\frac{d}{a}$ $\frac{D}{b}$ c


Вариант 1

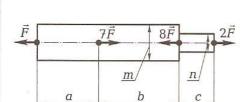
Дано: F=10 кH, $\alpha=b=30$ мм, c=10 мм. Брус имеет круглое сечение, d=10 мм, D=15 мм


Вариант 2

Дано: F=30 кH, a=b=30 мм, c=10 мм. Брус имеет круглое сечение, d=20 мм, D=30 мм


Вариант 3

Дано: F=20 кН, $\alpha=b=30$ мм, c=10 мм. Брус имеет круглое сечение, d=20 мм


Вариант 4

Дано: F=20 кH, a=b=30 мм, c=10 мм. Брус имеет круглое сечение, d=10 мм, D=20 мм

Вариант 5

Дано: F=10 кH, a=b=30 мм, c=10 мм. Брус имеет круглое сечение, d=10 мм, D=15 мм

Вариант 6

Дано: F=15 кH, $\alpha=b=30$ мм, c=10 мм. Брус имеет квадратное сечение, n=10 мм, m=15 мм

Практическая работа №4

Работа оценивается по 5-ти бальной системе, исходя из следующих принципов:

Правильно рассчитаны напряжения в сечениях, соблюдены правила построения эпюр, знаки, единицы измерения, штриховка

Задания выполняются на листке, приводятся все формулы, расчеты, единицы измерения, строятся эпюры, определяется опасное сечение..

Оценка	Критерии оценки
5 Отлично	Все выполнено верно
4 Хорошо	Имеются недочеты в оформлении, не
	проставлены единицы измерения
3 Удовлетворительно	Допущена 1 -2 ошибки в расчете или при
	построении эпюр
Неудовлетворительно	Более двух ошибок

Практическое задание №5

Практическая работа проводится после изучения темы 2.3. 2.4. Раздела 2.

T)			
Время	выпо	лнения	1:

подго	товка	3		мин;	
выпол	інение _	1_	час	_ миі	Η;
оформ	иление и	сдача	a	5	МИН
всего	1	час _	8	МИ	Н.

Выполнение расчетов на прочность и жёсткость

Цель: освоить навыки расчета на прочность;

Ход работы:

- построить эпюры продольных сил и нормальных напряжений;
- определить опасное сечение.

Необходимо определить поперечную силу и изгибающий момент в сечении. Уметь определять максимальные напряжения, опасные сечения, геометрические характеристики поперечных сечений балок.

Вопросы	Ответы	Кол
1. Определить поперечную силу в любом сечении на II участке бруса	−20 κH	1
$m_1 = 8 \text{ kH} \cdot \text{M}$ $m_2 = 10 \text{ kH} \cdot \text{M}$ 20 kH	8 ĸH	2
2 M 3 M 4 M 2 M	12 κΗ	3
I II 12 KH III 4 KH IV	4 ĸH	4
2. Вычислить величину изгибающего момента в сечении С	6 кН · м	-1
A B CA D	−2 кН • м	2
1 M 2 M 5 KH 2 M	10 кН⋅м	3
	5 кН·м	4
3. Для балки (вопрос 2) определить максимальное нормальное напряжение в сечении В.	47 МПа	1
Сечение балки — швеллер №16	64 МПа	2
	79 МПа	3
	102 МПа	4
. При каком поперечном сечении балка выдержит большую нагрузку?	A	-1
¥ / ₹ z	Б	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	3
x №10 No10	Γ	4
. Нормальное напряжение при изгибе в точке В поперечного сечения балки 60 МПа. Определить нормальное напряжение в точке С	120 МПа	1
$h = \frac{1}{3}H$	60 МПа	2
B y	40 МПа	3
	80 МПа	4

Вопросы	Ответы	Кол
1. Определить поперечную силу в любом сечении на II участке бруса	−20 κH	i
$m_1 = 8 \text{ kH} \cdot \text{M}$ $m_2 = 10 \text{ kH} \cdot \text{M}$	8 ĸH	2
2 M 3 M 4 M 2 M	12 ĸH	3
I II 12 KH III 4 KH IV	4 ĸH	4
Вычислить величину изгибающего момента в сечении C	6 кН · м	-1
A B C D	−2 кН • м	2
1 M 2 M 2 M 2 M	10 кН⋅м	3
	5 кН · м	4
3. Для балки (вопрос 2) определить максимальное нормальное напряжение в сечении В.	47 МПа	i I
Сечение балки — швеллер №16	64 МПа	2
	79 МПа	3
	102 МПа	4
. При каком поперечном сечении балка выдержит большую нагрузку?	A	1
¥ /	Б	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	3
X №10 No 10	Γ	4
. Нормальное напряжение при изгибе в точке В поперечного сечения балки 60 МПа. Определить нормальное напряжение в точке С	120 МПа	1
$h = \frac{1}{3}H$	60 МПа	2
B y	40 МПа	3
F 1 = 1 x	80 МПа	4

Вопросы	Ответы	Код
. Определить поперечную силу в любом сечении на III участке балки	20 ĸH	1
$m_1 = 8 \text{ kH} \cdot \text{m}$ $m_2 = 10 \text{ kH} \cdot \text{m}$	−8 кН	2
2 M 3 M 4 M 2 M IV IV IV	−16 ĸH	3
	4 ĸH	4
. Вычислить величину изгибающего момента в сечении С	6 кН·м	1
7,6 KH 10 KH 2,6 KH D	5,2 кН⋅м	2
1 _M 2 _M 3 _{KH} 2 _M 2 _M	10 кН⋅м	3
	15 кН⋅м	4
. Для балки (вопрос 2) определить максимальное нормальное напряжение в сечении В.	286 МПа	1
Сечение балки — швеллер №10	96 МПа	2
	148 МПа	3
	218,4 МПа	4
. При каком поперечном сечении балка выдержит большую нагрузку?	А	ī
¥ 1	Б	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	3
x N≥16 N≥16 x	ſ	4
. Нормальное напряжение при изгибе в точке В поперечного сечения балки 120 МПа. Определить нормальное напряжение в точке С	120 МПа	1
$h = \frac{1}{4}H$	60 МПа	2
15 A B Y	40 МПа	3
F 1 = x	80 МПа	4

Вопросы	Ответы	Код
1. Определить поперечную силу в любом сечении на II участке балки	18 ĸH	1
\$5,4 kH	12,6 ĸH	2
3 _M 4 _M 3 _M 7	11,4 кН	3
	24 ĸH	4
г. Вычислить величину изгибающего момента в сечении D	94,5 кН⋅м	1
$m_1 = 8 \text{ kH} \cdot \text{M}$ $m_2 = 4 \text{ kH} \cdot \text{M}$ 115 kH 120 kH	62,5 кН • м	2
10 KH A 3 M B 2 M C 1,5 M D 2 M E	74,5 кН • м	3
	109,5 кН⋅м	4
3. Для балки (вопрос 2) определить максимальное нормальное напряжение в сечении <i>D</i> . Сечение балки — швеллер №40	48,5 МПа	1
Сечение балки — швеллер жүчө	78 МПа	2
	102 МПа	3
	147 МПа	4
. Выбрать вариант поперечного сечения балки, при котором балка выдержит большую нагрузку	A	1
20.	Б	2
Nº12 Nº10 Ø60	В	3
$\frac{1}{A}$ $\frac{1}{B}$ $\frac{1}{B}$,	4
. Выбрать соответствующую эпюру распределения касательных напряжений по высоте сечения при	A MARINE TO A	1.
поперечном изгибе	Б	2
	В	3
A B B Γ	· 1	4

Вопросы	Ответы	Код
I. Определить поперечную силу в любом сечении на III участке бруса	18 ĸH	1
\$5,4 kH	12,6 ĸH	2
3 _M 4 _M 3 _M 7	11,4 κΗ	3
1 1 1 1 m 1 m 1	24 кН	4
. Определить величину изгибающего момента в сечении С (справа)	94,5 кН⋅м	1
$m_1 = 6 \text{ KH} \cdot \text{M}$ $m_2 = 1.5 \text{ KH} \cdot \text{M}$	62,5 кН · м	2
A B C D E S A D E S A D A D B B A D	74,5 кН ∙ м	3
	109,5 кН⋅м	4
. Для балки (вопрос 2) определить максимальное нормальное напряжение в сечении С. Сечение балки — двутавр №30	54,7 МПа	1
deserve deserve applicable 74250	67,2 МПа	2
	132 МПа	3
	154 МПа	4
Выбрать вариант поперечного сечения балки, при котором балка выдержит большую нагрузку	A.	1
¥ /	Б	2
No 10	В	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r	4
Выбрать соответствующую эпюру распределения касательных напряжений по высоте сечения при поперечном изгибе	A	1
у	Б	2
	В	3
A Β Β Γ	r	4

Практическая работа №5

Работа оценивается по 5-ти бальной системе, исходя из следующих принципов:

за выполнение задания, требующего нескольких математических операций ... 1,5 балла.

Количество баллов	Оценка
5	Отлично
4	Хорошо
3	<i>Удовлетворительно</i>
моньшо 3	Неудоелетеринельно

Задания выполняются на листке, приводятся все

формулы, расчеты, единицы измерения, пишется полученный ответ и выбирается код из правого крайнего столбца.

Ответы:

Вопросы	1	2	3	4	5
Вариант 1	4	3	4	4	3
Вариант 2	1	2	2	4	3
Вариант 3	3	2	4	1	2
Вариант 4	2	3	2	2	3
Вариант 5	3	2	3	3	1

Практическая работа №6

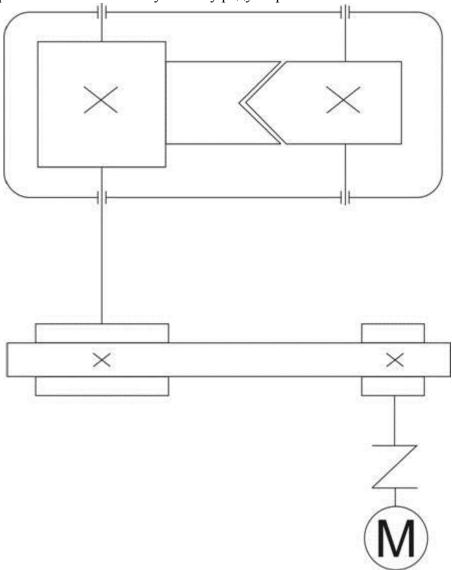
Проводится после изучения темы 3.1. 3.2.

Время выполнения:

подготовка_3 мин; выполнение 60_мин; оформление и сдача 5 мин; всего 68 мин

Выбор электродвигателя и кинематический расчет для редуктора

Цель: закрепить навыки расчета параметров электрических систем и элементов механических систем


Введение.

Поскольку большинство деталей машин общего назначения используются в приводах, то они выбраны одним из объектов для расчета. Привод машин и механизма — система, состоящая из двигателя и связанных с ним устройств для приведение в движение рабочих органов машин. Редуктор — это комплексная зубчатая передача, состоящая из зубчатых колес, валов, осей, подшипников, корпуса и системы смазки. Редуктор используется для передачи мощности от электродвигателя к рабочим механизмам.

Задание для расчета.

Сконструировать электродвигатель для одноступенчатого цилиндрического редуктора.

Вычерчиваем кинематическую схему редуктора:

- 1. Мощность на ведомом валу редуктора N = 3,3 кВт
- 2. Число оборотов ведомого вала n = 120 об/мин.

Выбор электродвигателя и кинематический расчет.

Определим КПД привода (табл1.1)

$$\eta = \eta_1 \cdot \eta_2^2 \cdot \eta_3$$

где η_1 - КПД ременной передачи, $\eta_1 = 0.97$;

 η_2 - КПД пары подшипников, $\eta_2 = 0.99$;

 η_3 - КПД зубчатой передачи, $\eta_{3=0,97}$.

$$\eta = 0.97 \cdot 0.99^2 \cdot 0.97 = 0.922$$

Определим требуемую мощность электродвигателя.

$$N_{mp} = \frac{N_s}{\eta} = \frac{3.3}{0.922} = 3.58$$
 _{KBT}

По табл. П5 по требуемой мощности выбираем электродвигатель АОП2-42-6 N = 4 кВт, n = 955 об/мин.

Передаточное число привода.

$$i = \frac{H_{\delta e}}{H_s} = \frac{955}{120} = 7,96$$

Частные передаточные числа (таб.1.2)

- редуктора

$$i_p = 4$$

$$i_{n.p.} = \frac{7,96}{4} = 1,99$$

- ременной передачи

Частоты вращения и угловые скорости валов обработана и шкивов ременной передачи

$$H_1 = H_{os} = 955 \text{ об/мин},$$
 $\omega_1 = \omega_{os} = \frac{\pi H_1}{30} = \frac{\pi \cdot 955}{30} = 100$ рад/сек. $H_2 = \frac{n_1}{i_{p.n.}} = \frac{955}{1,99} = 480$ $\omega_2 = \frac{\omega_1}{i_{p.n.}} = \frac{100}{1,99} = 50,3$ рад/сек. $H_3 = \frac{H_2}{i_p} = \frac{480}{4} = 120$ $\omega_3 = \frac{\omega_2}{i_p} = \frac{50,3}{4} = 12,6$ рад/сек.

Выбран электродвигатель АОП2-42-6.

4.КРИТЕРИИ ОЦЕНКИ Практическая работа №6

Работа оценивается по 5-ти бальной системе, исходя из следующих принципов:

Правильно рассчитаны параметры электротехнических и механических систем и выбраны детали машины (редуктора).

Задания выполняются на листке, приводятся все формулы, расчеты, единицы измерения.

Оценка	Критерии оценки
5 Отлично	Все выполнено верно
4 Хорошо	Имеются недочеты в оформлении, не
	проставлены единицы измерения
3 Удовлетворительно	Допущена 1 -2 ошибки в расчете или при
	построении эпюр
Неудовлетворительно	Более двух ошибок

Проводится после изучения темы 1.2. раздел 1

Вариант №1

1. Состояние твердого тела не изменится, если:

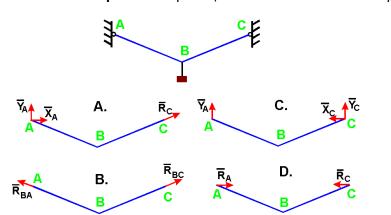
- 1. Добавить пару сил;
- 2. Добавить уравновешивающую силу;
- 3. Одну из сил параллельно перенести в другую точку тела
- 4. Добавить уравновешенную систему сил;
- 5. Добавить любую систему сил.

2. Какое тело считается свободным?

- А. Имеющее одну точку опоры;
- В. Находящееся в равновесии;
- С. На которое не наложены связи;
- D. Если равнодействующаяся всех сил равна нулю.

3. Что называется связью?

- А. Тело, которое не может перемещаться;
- В. Тело, которое может свободно перемещаться
- С. Сила, действующая на тело, которое не может перемещаться;
- D. Сила, действующая на тело, которое может перемещаться;
- Е. Тело, ограничивающее перемещение данного тела


4. Что называется реакцией связи?

- 1. Сила, с которой рассматриваемое тело действует на связь;
- 2. Тело, ограничивающее свободное движение другого тела;
- 3. Сила, с которой связь действует на тело;
- 4. Взаимодействие между телом и связью;
- 5. Любая неизвестная сила.

5. Как направлена реакция нити, шнура, троса:

- 1) Реакция образует произвольный угол с направлением связи
- 2) Вдоль нити, шнура, троса от рассматриваемого тела;
- 3) Вдоль нити, шнура, троса к рассматриваемому телу
- 4) Перпендикулярно нити, шнуру, тросу
- 5) Под углом 45° к нити, шнуру, тросу?

6. Укажите направления реакций связей невесомых стержней АВ и ВС?

3. C

4. D

7. Укажите направление реакций связи, если связь - подвижный цилиндрический

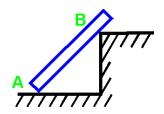
шарнир.

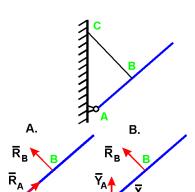
1) A

В.

2) B 3) C

4) D





8. Как направлены реакции связей балки АВ, если вес балки не учитывается:

- 1. Параллельно полу в т. А и перпендикулярно балке в т. В;
- 2. Вдоль балки АВ
- 3. Перпендикулярно полу в т. А и параллельно полу в т. В ;
- 4. Перпендикулярно полу в т. А и перпендикулярно балке в т. В?

9. Укажите направления реакций связи в опоре А и невесомом стержне ВС.

- 1) A
- 2) B
- 3) C
- 4) D

- 1. Алгебраическая величина, равная произведению модуля силы на синус угла между вектором силы и положительным направлением оси;
- 2. Вектор, заключенный между проекциями начала и конца вектора силы на ось;
- 3. Алгебраическая величина, равная произведению модуля силы на косинус угла между вектором силы и положительным направлением оси;
- 4. Вектор, заключенный между проекциями начала и конца вектора силы на плоскость.

1. Состояние твердого тела не изменится, если:

Добавить пару сил;

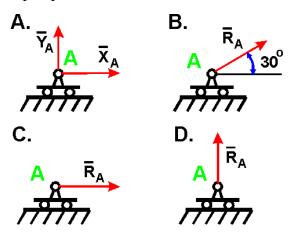
- 1. Добавить уравновешенную систему сил;
- 2. Добавить уравновешивающую силу;
- 3.Одну из сил параллельно перенести в другую точку тела
- 4. Добавить любую систему сил.

2. Какое тело считается свободным?

- А. Имеющее одну точку опоры;
- В. Находящееся в равновесии;
- С. Если равнодействующая всех сил равна нулю;
- D. На которое не наложены связи.

3. Что называется связью?

- А. Тело, которое не может перемещаться;
- В. Тело, ограничивающее перемещение данного тела;
- С. Сила, действующая на тело, которое не может перемещаться;
- D. Сила, действующая на тело, которое может перемещаться;
- Е. Тело, которое может свободно перемещаться.


4. Что называется реакцией связи?

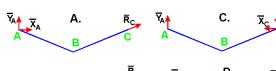
- 1. Сила, с которой рассматриваемое тело действует на связь;
- 2. Тело, ограничивающее свободное движение другого тела;
- 3. Любая неизвестная сила;
- 4. Взаимодействие между телом и связью;
- 5. Сила, с которой связь действует на тело.

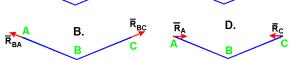
5. Как направлена реакция нити, шнура, троса:

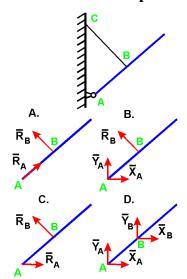
- 1) Реакция образует произвольный угол с направлением связи
- 2) Перпендикулярно нити, шнуру, тросу;
- 3) Вдоль нити, шнура, троса к рассматриваемому телу;
- 4) Вдоль нити, шнура, троса от рассматриваемого тела;
- 5) Под углом 45° к нити, шнуру, тросу?

6. Укажите **направление реакций связи**, если связь - **подвижный** цилиндрический шарнир?

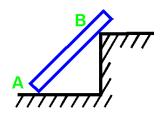
- 1. A
- 2. B
- 3. C
- 4. D


7. . Укажите направления реакций связей невесомых стержней АВ и ВС





3) C 4) D



8. Укажите направления реакций связи в опоре А и невесомом стержне ВС.

- 1. A.
- 2. B.
- 3. C.
- 4. D.

9. Как направлены реакции связей балки АВ, если вес балки не учитывается:

- 1. Параллельно полу в т. А и перпендикулярно балке в т. В;
- 2. Вдоль балки АВ
- 3. Перпендикулярно полу в т. А и параллельно полу в т. В ;
- 4. Перпендикулярно полу в т. А и перпендикулярно балке в т. В ?

10. Проекция силы на ось - это:

1. Алгебраическая величина, равная произведению модуля силы на синус угла между вектором силы и положительным направлением оси;

- 2. Вектор, заключенный между проекциями начала и конца вектора силы на ось;
- 3. Алгебраическая величина, равная произведению модуля силы на косинус угла между вектором силы и положительным направлением оси;
- 4. Вектор, заключенный между проекциями начала и конца вектора силы на плоскость.

Ответы

№ вопроса	Ответ	Ответ	Кол-во
	Вариант 1	Вариант 2	баллов
1	- №4	- 2	1
2	- C	- D	1
3	– E	- B	1
4	- №3	- №5	1
5	- №2	- №4	1
6	-№2 – B	-№4 – D	1
7	- №4 – D	№2- B	1
8	№4	№2 -B	1
9	№2 – B	№ 4	1
10	№ 3	№3	1
всего			10

Количество баллов	Оценка
9-10	Отлично
8-7	Хорошо
6	<i>Удовлетворительно</i>
меньше 6	Неудовлетворительно

Тест №2

Проводится после изучения темы 3.1.3.2. раздел 3.

Время выполнения:

```
подготовка_3_мин; выполнение ___20__ час _ мин; оформление и сдача _2_ мин; всего 25 мин.
```

Детали машин и механизмов.

Инструкция к тестовому заданию №2

Тест состоит из 10 заданий и рассчитан на 25 минут. Каждое из заданий имеет предполагаемые ответы, помеченные буквами. Выберите среди предложенных ответов верный (единственный) и запишите его против номера вопроса.

Выполняйте задания последовательно, внимательно прочитав указания к каждой части. Не задерживайтесь слишком долго на одном задании. Если не можете выполнить очередное задание, переходите к следующему.

ВАРИАНТ №1

- 1. Как связаны между собой тела (детали), образующие одно звено?
- а) подвижно;
- б) неподвижно
 - 2. Какие кинематические пары являются высшими:
- а) соединение вала с подшипником скольжения;
- б) сцепление зубьев в зубчатых передачах;
- в) соединение ползуна и направляющей;
- г) соединение шариков с дорожкой качения в подшипнике качения.
- 3. Какое звено является ведущим в кривошипно-ползунном механизме двигателя внутреннего сгорания:
- а) кривошип;
- б) шатун;
- в) кулиса;
- г) ползун.
- 4. Какой вид соединений обеспечивает большую точность взаимного расположения деталей:
- а) соединение клиновыми шпонками;
- б) соединение призматическими шпонками;
- в) шлицевое соединение.
 - 5. Какую резьбу применяют в винтовых парах для передачи движения:
- а) треугольную;
- б) трапецеидальную.
 - 6. Передаточное число и больше единицы. Какая это передача:
- а) понижающая;
- б) повышающая.
 - 7. Какое звено в червячной передаче является ведущим
- а) червяк;
- б) червячное колесо;

- в) шестерня.
- 8. Какая ветвь открытой ременной передачи испытывает при работе большее натяжение:
- а) ведущая ветвь;
- б) ведомая ветвь.
 - 9. Из какого расчета определяют шаг цепи в цепной передаче:
- а) из расчета цепи на прочность;
- б) из расчета цепи на износостойкость
 - 10. По какому условию прочности следует рассчитывать оси:
- а) по условию прочности на кручение;
- б) условию прочности на изгиб;
- в) условию прочности на совместное действие изгиба и кручения

ВАРИАНТ№2

- 1. Какие кинематические пары подвергаются большему износу:
- а) низшие;
- б) высшие.
- 2. Какое звено является ведущим в кривошипно-ползунном механизме поршневого компрессора:
- а) кривошип;
- б) шатун;
- в) кулиса;
- г) ползун.
 - 3. Какие шпонки обеспечивают лучшее центрирование деталей на валу:
- а) клиновые шпонки;
- б) призматические шпонки.
 - 4. Какую резьбу применяют для крепежных соединений:
- а) треугольную;
- б) трапецеидальную;
- в) прямоугольную.
 - 5. В каких механизмах возникают большие динамические нагрузки:
- а) в механизмах возвратно-поступательного движения;
- б) механизмах вращательного движения.
- 6. Может ли нормально работать фрикционная передача, если оба катка будут вращаться относительно неподвижно закрепленных подшипников?
- 7. Как называется окружность зубчатого колеса, на которой расстояние между соседними зубьями равно шагу зуборезного инструмента:
- а) делительная:
- б) начальная.
- 8. Какой размер является основным для выбора приводной цепи цепной передачи:
- а) диаметр ролика;
- б) шаг цепи;

- в) толщина звеньев цепи.
- 9. Деталь, соединяющая электродвигатель с машиной, работает только на кручение. Как правильно называется эта деталь:
- а) вал;
- б) ось;
- в) стержень.
 - 10. Может ли быть ось неподвижной?

Ответы

№ вопроса	Ответ	Ответ	Кол-во баллов
	Вариант 1	Вариант 2	
1	б	б	1
2	Б	a	1
3	Γ	б	1
4	В	a	1
5	Б	a	1
6	A	Не может	1
7	A	a	1
8	A	б	1
9	Б	a	1
10	Б	да	1
всего			10

Количество баллов	Оценка	
9-10	Отлично	
8-7	Хорошо	
6	<i>Удовлетворительно</i>	
меньше 6	Неудовлетворительно	

Темы индивидуальных заданий (рефератов, докладов, сообщений)

Выполняются после изучения темы 3.1. 3.2. раздел 3

- 1. Современные тенденции в развитии машиностроения
- 2. Государственный стандарт (ГОСТ) как основной документ единых технических требований к промышленной продукции.
- 3. Связь между работой конструктора, технолога и металлурга.
- 4. Основные критерии работоспособности и расчета деталей машин: прочность и жёсткость.
- 5. Проектные и проверочные расчеты.
- 6. Конические зубчатые передали. Область применения, достоинства и недостатки.
- 7. Пути модернизации технологического процесса механической обработки изделий из чугуна.
- 8. Особенности конструирования звёздочек цепных передач.

Индивидуальное задание выполняется в виде реферата, возможна электронная презентация сообщения.

Структура эссе

- 1. Титульный лист
- 2. Введение (суть и обоснование выбора данной темы).
- 3. Основная часть:
 - тезис, аргументы

- 4. Заключение (обобщения и аргументированные выводы по теме) Критерии оценки:
- оценка «отлично» выставляется студенту, за полное и логичное освещение темы. Аккуратное оформление. Срок сдачи не нарушены.
- оценка «хорошо» с небольшими недочетами. Срок сдачи не нарушены.
- оценка «удовлетворительно» Неаккуратное оформление. Содержание не полное.
- оценка «неудовлетворительно» . Нарушены сроки сдачи больше двух недель. Содержание студент не может пересказать, не владеет материалом. Неаккуратное оформление.